276 research outputs found

    Дотик до вічності. Про розроблення нового історико/архітектурного плану м. Керчі

    Get PDF
    У 2009 р. автору статті було доручено очолити історико-містобудівні дослідження одного з найцікавіших стародавніх міст нашої країни Керчі. Метою досліджень було складання нового історико/архітектурного опорного плану з визначенням історичного ареалу і зони охорони найбільш цінних територій в межах сучасного міста

    Strong time dependence of ocean acidification mitigation by atmospheric carbon dioxide removal

    Get PDF
    In Paris in 2015, the global community agreed to limit global warming to well below 2 ∘C, aiming at even 1.5 ∘C. It is still uncertain whether these targets are sufficient to preserve marine ecosystems and prevent a severe alteration of marine biogeochemical cycles. Here, we show that stringent mitigation strategies consistent with the 1.5 ∘C scenario could, indeed, provoke a critical difference for the ocean’s carbon cycle and calcium carbonate saturation states. Favorable conditions for calcifying organisms like tropical corals and polar pteropods, both of major importance for large ecosystems, can only be maintained if CO2 emissions fall rapidly between 2025 and 2050, potentially requiring an early deployment of CO2 removal techniques in addition to drastic emissions reduction. Furthermore, this outcome can only be achieved if the terrestrial biosphere remains a carbon sink during the entire 21st century

    Предисловие

    Get PDF
    This study provides a conceptual framework for exploring the bargaining space within international climate negotiations based on important economic, political and environmental considerations. Based on it, we analyse combinations of the proposed emission reduction ranges for Annex I countries as a group (25–40% below 1990 levels) and non-Annex I as a group (15–30% below baseline) by 2020 to limit global warming to 2 °C. We use results of the FAIR model with costs estimates based on two energy system models. We conclude that the range of targets that comply with a set of criteria for economic, political and environmental considerations is smaller than that by environmental considerations alone. More specifically, we find that according to our criteria, a 30% Annex I reduction target below 1990 levels, combined with a 20% non-Annex I reduction target below baseline emission levels (i.e. 20 to 30% above 2005 levels), is the only combination of targets fulfilling all our criteria for both energy system models. Otherwise, reaching the 2 °C target becomes less likely, technically infeasible, or non-Annex I abatement costs are likely to exceed those of Annex I, a result, which we consider less plausible from a political viewpoint in our conceptual framework

    Загальні засади формування та діяльності колегії Ніжинської районної державної адміністрації в 90-рр. ХХ ст.

    Get PDF
    The nature and scale of changes described in Part 1 indicate that, without additional policies, the global environment will degrade further – from a situation that already raises considerable concern. A crucial question, therefore, is how to halt and reverse such trends. While previous Global Environment Outlook (GEO) reports have explored several scenarios looking at very different futures (UNEP 2002, 2007), the emphasis of GEO-5 is on the choices and strategies that could, from 2012, lead to a sustainable future. This is advanced by looking at two very different storylines based on a review of existing scenario studies: • a view of the world in 2050 assuming business-as-usual paths and behaviours – “conventional world” scenarios; and • an alternative that leads to results consistent with our current understanding of sustainability and agreed-upon goals and targets on the road to 2050 – “sustainable world” scenarios

    Co-benefits of black carbon mitigation for climate and air quality

    Get PDF
    Mitigation of black carbon (BC) aerosol emissions can potentially contribute to both reducing air pollution and climate change, although mixed results have been reported regarding the latter. A detailed quantification of the synergy between global air quality and climate policy is still lacking. This study contributes with an integrated assessment model-based scenario analysis of BC-focused mitigation strategies aimed at maximizing air quality and climate benefits. The impacts of these policy strategies have been examined under different socio-economic conditions, climate ambitions, and BC mitigation strategies. The study finds that measures targeting BC emissions (including reduction of co-emitted organic carbon, sulfur dioxide, and nitrogen dioxides) result in significant decline in premature mortality due to ambient air pollution, in the order of 4 to 12 million avoided deaths between 2015 and 2030. Under certain circumstances, BC mitigation can also reduce climate change, i.e., mainly by lowering BC emissions in the residential sector and in high BC emission scenarios. Still, the effect of BC mitigation on global mean temperature is found to be modest at best (with a maximum short-term GMT decrease of 0.02 °C in 2030) and could even lead to warming (with a maximum increase of 0.05 °C in case of a health-focused strategy, where all aerosols are strongly reduced). At the same time, strong climate policy would improve air quality (the opposite relation) through reduced fossil fuel use, leading to an estimated 2 to 5 million avoided deaths in the period up to2030. By combining both air quality and climate goals, net health benefits can be maximized

    Pathways to achieve universal household access to modern energy by 2030

    Get PDF
    A lack of access to modern energy impacts health and welfare and impedes development for billions of people. Growing concern about these impacts has mobilized the international community to set new targets for universal modern energy access. However, analyses exploring pathways to achieve these targets and quantifying the potential costs and benefits are limited. Here, we use two modelling frameworks to analyse investments and consequences of achieving total rural electrification and universal access to clean-combusting cooking fuels and stoves by 2030. Our analysis indicates that these targets can be achieved with additional investment of US$(2005)65-86 billion per year until 2030 combined with dedicated policies. Only a combination of policies that lowers costs for modern cooking fuels and stoves, along with more rapid electrification, can enable the realization of these goals. Our results demonstrate the critical importance of accounting for varying demands and affordability across heterogeneous household groups in both analysis and policy setting. While the investments required are significant, improved access to modern cooking fuels alone can avert between 0.6 and 1.8 million premature deaths annually in 2030 and enhance wellbeing substantially

    A Multi-model Analysis of the Regional and Sectoral Roles of Bioenergy in Near- and Long-term CO2 Emissions Reduction

    Get PDF
    This paper examines the near- and the long-term contribution of regional and sectoral bioenergy use in response to both regionally diverse near-term policies and longer-term global climate change mitigation policies. The use of several models provides a source of heterogeneity in terms of incorporating uncertain assumptions about future socioeconomics and technology, as well as different paradigms for how different regions and major economies of the world may respond to climate policies. The results highlight the heterogeneity and versatility of bioenergy itself, with different types of resources and applications in several energy sectors. In large part due to this versatility, the contribution of bioenergy to climate mitigation is a robust response across all models. Regional differences in bioenergy consumption, however, highlight the importance of assumptions about trade in bioenergy feedstocks and the influence of energy and climate policies. When global trade in bioenergy is possible, regional patterns of bioenergy use follow global patterns. When trade is assumed not to be feasible, regions with high bioenergy supply potential tend to consume more bioenergy than other regions. Energy and climate policies, such as renewable energy targets, can incentivize bioenergy use, but specifics of the policies will dictate the degree to which this is true. For example, renewable final energy targets, which include electric and non-electric renewable sources, increase bioenergy use in all models, while electric-only renewable targets have a mixed effect on bioenergy use across models

    What do near-term observations tell us about long-term developments in greenhouse gas emissions? A letter

    Get PDF
    Long-term scenarios developed by integrated assessment models are used in climate research to provide an indication of plausible long-term emissions of greenhouse gases and other radiatively active substances based on developments in the global energy system, land-use and the emissions associated with these systems The phenomena that determine these long-term developments (several decades or even centuries) are very different than those that operate on a shorter time-scales (a few years) Nevertheless, in the literature, we still often find direct comparisons between short-term observations and long-term developments that do not take into account the differing dynamics over these time scales In this letter, we discuss some of the differences between the factors that operate in the short term and those that operate in the long term We use long-term historical emissions trends to show that short-term observations are very poor indicators of long-term future emissions developments Based on this, we conclude that the performance of long-term scenarios should be evaluated against the appropriate, corresponding long-term variables and trends The research community may facilitate this by developing appropriate data sets and protocols that can be used to test the performance of long-term scenarios and the models that produce the
    corecore